The generator matrix 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X^2 1 1 1 1 1 1 1 1 1 1 1 1 0 X 0 X^2+X 0 X^2+X X^2 X^2+X 0 X^2+X 0 X^2+X 0 X^2+X X^2 X X^2 X X X^2 0 0 X^2+X X^2+X 0 0 X^2 X^2 X^2+X X^2+X X X X^2 0 0 X^2 X^2 X^2+X X^2+X X X 0 0 X^2 0 0 0 X^2 0 0 0 X^2 0 0 0 X^2 X^2 0 X^2 X^2 X^2 0 X^2 0 X^2 0 X^2 0 0 0 X^2 X^2 0 X^2 X^2 X^2 X^2 0 0 0 0 0 0 X^2 X^2 0 X^2 X^2 0 0 0 0 0 X^2 0 0 0 X^2 0 0 X^2 X^2 X^2 X^2 0 0 0 0 X^2 0 X^2 X^2 0 X^2 X^2 X^2 X^2 X^2 X^2 0 0 X^2 0 0 X^2 X^2 0 0 X^2 X^2 0 X^2 0 X^2 0 0 0 0 0 X^2 0 X^2 0 0 X^2 0 X^2 X^2 0 X^2 X^2 X^2 0 X^2 0 X^2 0 X^2 X^2 0 X^2 X^2 0 0 0 X^2 X^2 0 X^2 0 0 X^2 0 X^2 0 X^2 X^2 X^2 X^2 0 0 0 0 0 0 X^2 0 X^2 X^2 X^2 0 0 X^2 X^2 X^2 X^2 X^2 0 0 X^2 0 X^2 0 X^2 X^2 0 X^2 0 0 X^2 0 X^2 0 X^2 0 X^2 0 0 X^2 X^2 0 X^2 0 0 X^2 generates a code of length 45 over Z2[X]/(X^3) who´s minimum homogenous weight is 40. Homogenous weight enumerator: w(x)=1x^0+17x^40+48x^42+210x^44+176x^46+21x^48+32x^50+6x^52+1x^88 The gray image is a linear code over GF(2) with n=180, k=9 and d=80. This code was found by Heurico 1.16 in 0.0527 seconds.